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We study a one-dimensional lattice gas where particles jump stochastically 
obeying an exclusion rule and having a "small" drift toward regions of higher 
concentration. We prove convergence in the continuum limit to a nonlinear 
parabolic equation whenever the initial density profile satisfies suitable condi- 
tions which depend on the strength a of the drift. There is a critical value a c of 
a. For a < ac, the density values are unrestricted, while for a/> ac, they should 
all be to the right or to the left of a given interval J(a).  The diffusion coefficient 
of the limiting equation can be continued analytically to J(a) ,  and, in the 
interior of J(a) ,  it has negative values which should correspond to particle 
aggregation phenomena. We also show that the dynamics can be obtained as a 
limit of a Kawasaki evolution associated to a Kac potential. The coefficient a 
plays the role of the inverse temperature ft. The critical value of a coincides with 
the critical inverse temperature in the van der Waals limit and J ( a )  with the 
spinodal region. It is finally seen that in a scaling intermediate between the 
microscopic and the hydrodynamic, the system evolves according to an integro- 
differential equation. The instanton solutions of this equation, as studied by 
Dal Passo and De Mottoni, are then related to the phase transition region in 
the thermodynamic phase diagram; analogies with the Cahn-Hilliard equations 
are also discussed. 
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1. I N T R O D U C T I O N  

There has been and continues to be much interest in simple microscopic 
model systems whose collective behavior is described by hydrodynamic- 
type equations. The reason for this is both fundamental and practical: 

1. We want to have a clear understanding, hopefully a mathematical 
derivation, of the microscopic origins of the equations describing real 
macroscopic systems. For example, we want to obtain the Euler and 
Navier-Stokes equations for fluids from the underlying Hamiltonian 
microscopic dynamics of the atoms and molecules making up macroscopic 
matter. Our present mathematical abilities are, however, unequal to this 
task. We therefore consider the same problem for simplified model systems 
with various types of stochastic dynamics. For a discussion of the relevance 
of such models to real systems see ref. 17. 

2. We are interested in practical methods for computing solutions of 
nonlinear hydrodynamic-type equations. The numerical methods developed 
in the past half century, while quite powerful in some cases, leave much to 
be desired in others. This is particularly so in the case of fluid flow at high 
Reynolds number and/or in complex geometries. A possible remedy to 
this situation is the utilization of microscopic models with the following 
two desiderata: (i)They have the correct macroscopic behavior, i.e., the 
one described by the appropriate macroscopic equations, and (ii)their 
microscopic dynamics can be implemented efficiently on available (or soon 
to be available) computers for systems large enough to exhibit macroscopic 
behavior. With luck this would lead to an analogue method for solving 
certain problems which would be better (or cheaper) than numerical 
methods. 

The jury is still out on whether the lattice gas models introduced by 
Frisch et aL, (6) the FHP cellular automaton, and/or their descendants (see 
ref. 5), satisfy the above criteria in the various physical situations of interest 
where comparisons are appropriate and available. We shall not enter this 
controversy here, as our motivation is primarily fundamental. We note, 
however, that the model of segregating binary fluid for which we here 
prove hydrodynamic behavior belongs to a class in which there is much 
interest from both theoretical and experimental points of view; see, for 
instance, refs. 7, 8, 10, and 12-14. 

The Mode l  

The model we shall investigate here from a rigorous point of view is 
a modified (and simplified) version of a model introduced by Rothman and 
Keller (2~ and further studied by Rothman and Zaleski (21/ and Appert and 
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Zaleski. (1) They consider an FHP-type hexagonal lattice gas system con- 
taining two types of particles, say A and B, in which the dynamical rules 
are so rigged that there is a tendency for the mixture to segregate. More 
precisely, A and B particles on a given lattice site will have their velocities 
changed in a way that, consistent with momentum and species conserva- 
tion, will optimize the flux of A's (B's) in the same direction as their con- 
centration gradient. Numerical simulations clearly show segregation of the 
two species in regions of high total particle density and fractional concen- 
tration. (2~ Assuming a factorization of the probabilities at different 
lattice sites, corresponding to local equilibrium, and making a Chapman- 
Enskog type of expansion of the resulting Boltzmann equation led to a 
nonlinear hydrodynamic equation in which there is a mutual diffusion coef- 
ficient which becomes negative in approximately the regions in which phase 
segregation was observed. (21) We shall make a great many simplifications 
in the above model, ' always keeping in mind, however, the central point: 
the macroscopic equation will have a diffusion coefficient which becomes 
negative in some concentration range. While some of our modifications are 
essential to make the model amenable to a mathematical treatment, others 
are mostly for convenience. The most important of the former is the 
introduction of a (dominant) stochastic element in the dynamics: this is 
essential, at the present time, to obtain the local equilibrium state in the 
appropriate hydrodynamic scaling limit; cf. ref. 2. A less important 
modification is to consider the case where the total density is maximal, so 
that the total momentum is identically zero for every configuration and so 
need not be considered explicitly. This permits us to focus attention 
exclusively on one of the components, say A, which we call simply par- 
ticles, while the B's are the holes. The dynamics is then such that particles 
prefer to go uphill in the concentration gradient. We measure this gradient 
on a quasimacroscopic scale, i.e., to decide on its preferred direction of 
velocity in a given microscopic configuration, the particle looks at a large 
number of sites, infinite in the scaling limit, to find the direction of the con- 
centration gradient. Finally, we limit ourselves here to a one-dimensional 
model. 

The macroscopic equation we shall arrive at for the properly scaled 
microscopic density profile f(r,  t) will have the form 

& 0r 

with f(r ,  0) = f0(r), 0 <~fo(r) ~< 1. Here r e N, t e ~+ are measured in macro- 
scopic space and time units and 

Da(f)  = '  ~--af(1 -- f )  (1.2) 
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is a nonlinear diffusion constant which takes on nonpositive values for f in 
some interval [ I j ,  I + ] a [0, 1 ], where f (1  - f ) > / ( 2 a )  1. This can happen 
if the parameter a>~2 [-for a < 0  the second term in (1.2) will always be 
positive; our analysis applies also to this case and is much simpler]. We 
shall in fact be able to derive (1.1) when a ~> 2 only for the case wherefo(r) 
takes values in [0, I~- ) or (I +, 1 ], i.e., when Da(f) > 0 for all values of the 
density between minf0(r  ) and max fo(r). This is the case when the solu- 
tions of (1.1) are at least linearly stable. In the other cases we do not have 
theoretical results; there are, however, recent computer simulations due to 
G. Giacomin on a cellular automata with the same updating rules that we 
consider here. They show that the system undergoes phase segregation 
on a space scale of the order of the interaction length, while on the 
macroscopic scale the density profile does not change and the effective 
diffusion coefficient in the unstable region vanishes. 

The paper is organized as follows. In Section 2 we give a precise 
description of our lattice gas model. We also present there a continuous- 
time variation of our model for which the mathematical proofs are some- 
what simpler to describe. In Section 3 we show that our evolution can be 
obtained from an evolution satisfying detailed balance for a Kac potential 
V~, 7 ~  1/N. (16) We can then interpret our results in terms of the ther- 
modynamic phase diagram for V v, as given in the analysis of the van der 
Waals limit (7 ~ 0). The parameter a equals the inverse temperature/3, the 
critical value a = 2 is the same as the critical/~ for the thermodynamic free 
energy, while the interval [ I  (a),I+(a)] coincides with the spinodal 
region. The phase transition region is related to the instanton solutions of 
an integrodifferential equation which describes the particle system under a 
scaling intermediate between the microscopic and the hydrodynamic ones. 
In Section 4 we introduce a discrete equation, obtained from the equation 
for the expected value of the density at given lattice sites, assuming 
factorization of the probabilities. We then show that the derivation of (1.1) 
is reduced to proving that certain approximate solutions (which we call semi- 
solutions) of the above discrete equation converge to the solution of (1.1). 
In Section 5 we prove such a statement under the assumption that for all 
the initial densities the diffusion coefficient is strictly positive. In Sections 6 
and 7 we give technical details left out from Section 5; they essentially 
refer to estimates on the solutions of discrete stochastic approximations 
of (1.1) which arise naturally when studying the microscopic structure of 
the evolution. 

2. DESCRIPTION OF MODELS A N D  S T A T E M E N T  OF RESULTS 

We first give a description of the lattice gas automaton model and 
then present a closely related continuous-time model for which the 
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mathematical proofs are more transparent. The proofs work also for the 
discrete-time model, but we shall not present them here. 

2.1. Discrete Time Model 

We consider a system of particles on a one-dimensional lattice, each 
one with velocity o = + 1. We denote by s the set of all particle configura- 
tions 4, ~ = {~(x, ~): ~(x, a)~ {0, 1}, x~7/, a(x)e { - 1 ,  1}}, and by ~(x) 
the occupation number at the site x, namely ~(x)= ~(x, - 1 ) +  ~(x, 1). 

There is an exclusion rule that prevents two particles at the same 
site from having the same velocity. Therefore each site x e E can have at 
most two particles (with different velocities). Each unit updating of the 
automaton consists of two steps, the first is stochastic, the second one 
deterministic: 

Step 1. Velocity Flips. This updating rule acts at each site x. If 
there are two or no particles at x, then nothing happens. If, on the other 
hand, there is one particle at x with velocity ~(x), then its new velocity 
o'(x) takes the value 1 or - 1  with probability p and 1 -  p, respectively, 
where 

p = 1/2 + ~u (.X; ~)/4 (2.1a) 

and I,~N(X; ~)1 < 2 is of  the form 

AN(X; ~) = ~, 0u(i)[~(x + i) - ~(x - i)] (2.1b) 
i=1 

with 0N(i) having range N (or, more generally, decaying on a space scale 
N, as we shall see in Section 3). 

Step 2. A d v e c t i o n .  Every particles at site x moves to x + o ' ( x )  
keeping its velocity. 

According to (2.1), the particle at site x chooses its new velocity a'(x) 
by looking at the configuration of particles, independently of their 
velocities, with a weighting factor 0N(i), in a neighborhood of size 2N. 
When ON(i)> 0 the interaction will produce a tendency toward clumping 
which will oppose the tendency toward uniformization produced by the dif- 
fusive term 1/2 in (2.1a). This is the effect we are after for the macroscopic 
behavior described by (1.1)-(1.2), i.e., 0N( i )>0  will correspond to a > 0  
there. 

Our choice for 0N(i) here (other possibilities will be discussed in 
Section 5) is 

~aN -2, i<~N (2.2) 
ON(i) = [0, i > N 
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with N > 2  lal, N will diverge in the continuum lifnit, as we are going to 
see. To obtain hydrodynamic equations we have to consider a limit in 
which the ratio of microscopic to macroscopic spatial scales, denoted by ~, 
goes to zero. To get (1.1) we look at the density profile at microscopic 
times of order e 2T and set N equal to the integer part of e -~+% or 
sloppily, N = ~- 1 + =, with 0 < c~ < 1. The particle will thus sample a micro- 
scopically large but macroscopically vanishing neighborhood. We note here 
that we can rewrite (1.1) in the form 

9]" 0 1 02f Of (2.3) 
~ + ~  [ f ( 1 - f ) E ] = ~ - ~  r, E=a or 

Equation (2.3) now resembles the Burgers equation derived in ref. 15 for 
the weakly asymmetric stochastic automaton process where 2n(x; ~) in 
(2.1b) is replaced by eE independently of ~. We obtain the Burgers equa- 
tion from (2.3) when Of/Or on the left-hand side of (2.3) is replaced by the 
externally given constant "drift velocity" there. The relationship between 
our (nonreversible) dynamical model and reversible models which satisfy 
detailed balance will be discussed in Section 3. 

2.2. Continuous-Time Model 

The macroscopic behavior of the discrete-time model described above 
is the same as that exhibited by another particle model for which proofs are 
somewhat simpler and more transparent, so that, in the sequel, we shall 
restrict our attention to this new system, which is a generalization of the 
weakly asymmetric simple exclusion process. The time is now continuous, 
the particles do not have velocities, and at each site there can be at most 
one particle, r /(x)= {0, 1 }. We also make a finite-volume assumption: we 
consider values of e > 0 so that ~-2 is an integer and for any such e the 
configuration space is 

Q=={tl~{O, 1}z:tl(x)=tl(x+2e 2), for all x e  7/} (2.4) 

In other words, the particle configurations are those of a lattice gas (with 
single occupancy) in a bounded interval of size 2e 2 + 1 with the identifica- 
tion of the first and last sites in the interval. The finite-volume assumption 
is not critical from a physical point of view because when e ~ 0 the space 
becomes infinite even in macroscopic units ( - e - l ) .  

The system evolves in time by particles attempting jumps to neigh- 
boring sites. The jump rate from x to x -  1 is 

c(x, x -  1; t/) = lt/(x)[1 - q(x- 1)] (2.5a) 
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just as in the symmetric simple exclusion process. The jump rate to the 
right is 

c(x,x+l;tl)=tl(x)[1--q(x+l)][l+,~N(X;tl)] ( 2 . 5 b )  

where A N is defined by (2.1b) and (2.2) and, in this case, IAN(X; /~)1 < 1/2. 
AN(X; tt) determines an asymmetry of the jumps; if we replace it by a 
nonzero constant we get the asymmetric simple exclusion process; if the 
constant is proportional to e, we get the so-called weakly asymmetric 
simple exclusion process. In our case AN(x; t/) is of order N ~. If N = e  -~, 
then we have a mean field interaction, which can be studied in a relatively 
simple way. In our case N =  e -~ +~, 0 < :~ < 1, and the analysis becomes 
rather more delicate. We could equally well consider a more symmetric 
evolution where also the jumps to the left are modified as in (2.5b); in the 
present form some formulas become slightly simpler. 

Summarizing, we have defined a process with state space f2 ~, i.e., the 
set of configurations which are periodic with period / - 2 e  -2, with 
generator 

l 1 

Luf(q) = ~ ~ ~ c(x, x + b; t / ) [ f (q  lx+nt'x+'t+b)) - f ( ~ / ) ]  
x = l  b = + l  n r  

(2.6a) 

where 

f t/(z) if z r  y 

~1(xY)(z) = ~q(x) if z = y 

[,q(y) if z = x  

(2.6b) 

(since the evolution is periodic, whenever a particle jumps, all the particles 
which are at sites differing by nl make the same jump). 

2.3. The Initial Measure 

The initial measure /~ is defined so that the variables q(x) for 
x s  [1, 2e -2]  (e 2 is an integer) are independent; it is then extended to the 
whole f2 ~ by imposing periodicity, namely that q(x+2e-2)=~l(x). To 
specify the averages of the q(x), we use the function fo(r) defined in 
Section 1 as the initial condition for the macroscopic equation (1.1). We 
assume that fo(r) is smooth, C~(R),  with uniformly bounded derivatives 
and having values in the whole interval [0, 1] if a < 2, while if a ~> 2 its 
values are contained either in [-0, 17) or (I +, 1 ]; see (1.2) for notation. We 

r then consider the function ~o ( ) ,  which is a smooth periodic approximation 
off0(r). More precisely it is in C~([R) with uniformly bounded derivatives 
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and having values in the same intervals specified above. We also require 
that ~o(r)=fo(r) for Ir[ ~<e - ~ -  1 and that j~;(r) is periodic with period 
2e- 1. We then set 

~(r/(x)  = 1) =7 ; ( ex )  (2.7) 

2.4. Results 

We denote by P~; the law of the process on f2 ~ with initial measure v 
and with generator LN. E~ denotes its expectation; recall that N =  e -1+~, 
0 < ~ < 1 .  

We have the following results: 

T h e o r e m  2.1. Let pc, fo(r) and jT~(r), and N =  e - l+~  be as above. 
Then for e small enough,  for any n >~ 1, for any r > 0 

lira sup E~ q(xi, 8-2r) - ~(exi,  = 0  (2.8) 
e-*O Xl,...,Xn i=  i ~  l 

where the sup is over distinct sites in [-1, 2e-2],  q(x, t) is the occupation 
number at (x, t), and j~(r, r) is the solution of (1.1) with initial condition 
jT;(r). Furthermore, denoting by f(r, ~) the solution of (1.1) with initial 
condition fo(r), then ~(r,  ~) ~ f(r, ~) uniformly on the compacts and faster 
than any positive power of e. 

We also have an estimate on the rate of convergence in (2.8) which 
allows us to estimate the structure of the single realizations of the process. 
For 0 < 7 < 1 define 

M(x, t, 8 Q = z7 ~ [r/(y, t ) - f ( ey ,  e2t)] (2.9) 
lY xl ~<e 7/2 

Notice that these intervals are infinitesimal in macroscopic units (-=e 1) 
and that the M(x, t, e ~) are random variables different in general from 
zero and different for each realization. 

T h e o r e m  2.2. We use the same notation and assumptions as in 
Theorem 1.1. Then for any 0 < ? < 1 there is ~ > 0 so that for any 0 < r' < r" 
and R 

lim P~<( sup sup [M(x,t,~ ~)]>ee)=O (2.10) 
8 ~ 0  "c '<82t~c  " ]x[~<8 IR 

and the convergence in (2.10) is faster than any power of ~. 

We shall prove the above theorems in Sections 4 6; in the next section 
we relate our system to a reversible evolution, so that it will be possible to 
relate dynamical and equilibrium properties of the system. 
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3. REVERSIBLE MODELS,  PHASE TRANSITION, 
AND SPINODAL DECOMPOSIT ION 

The only cases we can treat are those where the diffusion coefficient 
is strictly positive for all values of the density in the initial profile; the 
extension to the general case requires drastically new ideas. Results in 
this direction would be very important since they involve fundamental 
questions such as the derivation of hydrodynamics in the presence of 
phase transitions and the introduction of particle models describing 
spinodal decompositions; a rigorous proof that the diffusion constant is 
zero in the two-phase region for some Ginzburg-Landau models with finite 
range has been recently obtained) ~9) Given the relevance of the problem, 
we think we are justified if we present here some considerations which are 
mostly conjectures, but which might help formulate the problem in a 
mathematically rigorous fashion. 

To discuss phase transitions it is best to use Gibbs states; to achieve 
this it is enough to modify a little bit the rules of our evolution. We are 
indebted to Herbert Spohn for helpful suggestions in this respect, as well 
as for many useful discussions on the whole subject presented here. The 
idea is that our evolution behaves as the reversible exchange dynamics 
associated to a Kac potential. The prototype of Kac potentials is 

V~(r)=-~e -~/r, 7 > 0  and r~>0 (3.1) 

The corresponding Hamiltonian H~(q) is 

H,(q) = �89 ~ r/(x)q(y) V,( lx-yt)  (3.2) 
x, y 

and the Gibbs measure is 

1 H 
# ~ ( r / ) - -  e -~ ~"), /~>0 (3.3) 

- Z  

As before, the system is in a box of size e-2; the equalities (3.2) and (3.3) 
are therefore meaningful. 

We now define a process where a particle jump obeys the exclusion 
rule with intensities which depend on the neighboring particles (exclusion 
with speed change), in such a way that the detailed balance condition with 
respect to #~ is satisfied, #~ being then invariant and the process reversible. 
This is achieved by defining the jump intensity from x to y = x _+ 1 as 

cy(x, y; r/)= t/(x)[1 - q ( y ) ]  exp - ~ [H~(q x ' y ) -  H,/(t/)] (3.4) 
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where qx'Y(z) is defined in (2.6b). From (3.3) and (3.4) we see that the 
reversibility condition 

~(~) cT(x, y; ~)= ~7(~x,y) c,(y, x; ,7 x,y) (3.5) 

is fulfilled. It ensures that the generator of the process with intensities given 
by (3.4) is self-adjoint with respect to the Gibbs measure (3.3). 

By using (3.4), we have 

y;tl)-~rl(x)[1-q(y)] 1+  7 2 ~ e  ~Hs(z) rl(x+z) <~c72 (3.6) 
z 

s(z) = 1 otherwise 

c in (3.6) is a suitable constant. Analogous formulas hold for more general 
potentials, like those considered by Lebowitz and Penrose, (~6) and in 
particular when e x p { - 7  lzl} in (3.6) is replaced by 1 (7 [z[ ~< 1), i.e., the 
characteristic function that 7 Iz[ ~ 1. In this latter case if we set 7 = 1/N we 
get an expression like (2.5): we therefore conjecture that our results, stated 
in Section 2, extend to all these cases. Notice, however, that in contrast to 
(2.5), also the jump intensity to the left is different from that of the sym- 
metric exclusion process; in the continuum limit this should be equivalent 
to considering only modifications to jumps on the right (as in Section 2), 
but with /3/2 in (3.6) replaced by /3. Then, denoting by p the value of a 
density, we get the following condition for the diffusion coefficient to be 
positive: 

~ > �89 p)/3 dr e-r2, �89 p(1 -p ) /3  (3.8) 

as obtained heuristically from (3.6) by replacing rl(x+z)-rl(x-z) by 
2zO/Or p(r) (r = ~x) and then letting ~--* 0. The critical value /3~ is 2; for 
/3 < 2 the diffusion coefficient is positive for all values of p. For/3 > 2 there 
is a "forbidden interval of densities," namely 

[ I  (/3),1+(/3)] - ' - 1 2 - 2  \ 1 -  ~ j  , ~ + ~  (3.9) 

For densities outside this interval the diffusion coefficient is well defined 
and strictly positive. According to these considerations, we see that the 
parameter a in Section 2 plays the role of the inverse temperature/3. 

We shall now see that the interval in (3.9) also has a definite 
significance in the phase diagram associated to the potential (3.2). As 
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proven in ref. 16, the infinite-volume free energy fl 1F(/1, p; 7) [for the 
potential in (3.2)] has a limit when 7 ~ 0 given by 

2 F(~, p) =CE {Fo(p)-~bp } (3.10) 

where CE{-} denotes the convex envelope of {. }, Fo(p) is the free energy 
(times fl) of the system without any potential, 

Fo(p) =p  log p + (1 -p) log(1  - p )  (3.11) 

and 

b = -2 fo dr V~(r) (3.12) 

which equals 2 in our case. 
The phase transition region is determined by the values of/? and p for 

which the convex envelope in (3.10) differs from its argument. The critical 
value of/3 is 

sup /~: min [Fo(p)-  tip2] > 0 (3.13a) 
O~p~l ~ r  2 

This has the same value ( - 2 )  as the critical parameter found before using 
dynamical considerations. The phase transition region, for each fi > 2, is 
the interval 

[ �89 �89 (3.13b) 

where p * >  0 solves the equation 

1 + 2 p *  
log = 2/~p* (3.13c) 

1 - 2p* 

This interval is strictly larger than that defined in (3.9). The interval in 
(3.9) is, however, relevant in the phase diagram associated to (3.10); it is 
in fact the set of p's for which the argument inside the convex envelope is 
concave. This is the interval of complete thermodynamic instability, usually 
referred to as the spinodal region. Its complement inside the interval 
(3.13b) is the metastable region. 

The evolution therefore does not seem to distinguish the metastable 
region from the region where there is only a single phase; from a 
hydrodynamic point of view the two pure phases correspond respectively to 
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densities smaller than I (13)  and larger than I+(13). Presumably the 
thermodynamically pure phases, i.e., those which have densities respectively 
to the right and to the left of the interval in (3.13b), have a dynamical 
relevance only at much longer times, when tunneling effects brought about 
by large deviations become important. In fact, Penrose and Lebowitz (18) 
have proven that the free energy associated to a restricted ensemble where 
the "local density values" do not exceed the metastable critical density 
I (13), for instance, converges, in the limit 7--' 0, to the "metastable free 
energy," as given by the argument of the convex envelope in (3.10). The 
particle densities produced by our initial measure #~ when the density 
profile is completely to the right or to the left of the interval in (3.9) effec- 
tively fulfills the constraints imposed by Lebowitz and Penrose. Our results 
agree with their analysis since we do not see any sign of phase separation 
in these cases at least up to the hydrodynamic times e 2~. To see such 
effects we should wait for some large-density fluctuation due to interval 
noise, which will determine the escape from the metastable phase. This is 
therefore expected to occur on much longer time scales, presumably of the 
order of exp(cn); see ref. 18. 

The question remains whether the interval (3.13b) has also some 
dynamical significance. The answer is positive, as we shall see, using some 
very recent results obtained, in a work in progress, by Dal Passo and 
De Mottoni. This is related to the observation that there are actually two 
space scales in our model, one determined by the variation length in the 
initial state, i.e., ~e  -~, the other one by the range of the interaction N (or 
7 1); to be specific, we shall now stick to the system of Section 2. In the 
hydrodynamic scaling the interaction length should become infinitesimally 
short and this is achieved by choosing N =  e 1+~, c~ > 0. But we can also 
consider the other limit defined by the space-time scaling 

x--,r=N-lx; t~z=N-Z t  (3.14) 

We choose accordingly the initial measure to be a product measure with 
averages which vary over distances of the order of N and we prove 
convergence, in the same sense as in Theorem 2.1, to the equation 

a a~ la  , } 
o~ p(r , r)=~r r [-~-~rp(r, r)-- ap(1 --p) f_ dr' p(r+r', r) s(r') (3.15) 

where s(r) denotes the sign of r. 
An existence theorem holds for this equation and we have convergence 

for unrestricted choices of initial profile. The conjecture is that the 
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asymptotic behavior of (3.15) does describe the hydrodynamic behavior of 
the system. To be more precise, define 

6 = e N  (3.16) 

and consider as initial condition for (3.15) a 6-dependent profile defined as 

p(o~)(r) = fi(6r) (3.17) 

where fi is some given smooth function with values in [0, 1]. Call then 
p(a)(r, t) the corresponding solution of (3.15) and define 

p~(r, t )=p(a)(6-1r,  6 2t) (3.18) 

We expect for 6 small that pa describes the true behavior of the particle 
system in the hydrodynamic regime. Since pa satisfies the equation 

-~ pa(r, t) ~?r ( 2 0r pa(r' t) - a p a ( 1 -  pa) (}- 2 -a dr' pa(r + r" t) s(r') 

(3.19) 

with initial condition fi; the problem is then to find the limiting behavior 
at fixed finite times of the solution to (3.19) in the limit when c~ ~ 0. If fi 
does not have values in the interval (3.9), as assumed in Theorem 2.1, then 
(3.19) converges to (1.1). When, on the other hand, fi has values in the 
interval (3.9), then (3.19) should describe the separation of phases. In this 
frame Dal Passo and De Mottoni have studied the question of the shape of 
the profile which connects the two phases after their separation, namely 
those stationary solutions to (3.19) which have different asymptotics at 
_ oo. They look for solutions such that, for r >/0, pa(r) >t 1/2, and for r ~< 0 

1 __ pa(r)-~ �89 (3.20) 

They prove that besides pa = 1/2 there is another solution if and only if 
there is u*>  0 such that 

l + u *  
log 1 -- u* = au* (3.21) 

and in such a case 

1 U* 
lira p~(r) = ~___-- (3.22) 

r ~  - - ~  2 

Notice that u* depends on a (i.e., on the temperature), but it does not 
depend on 6 (actually it is independent of the Kac potential we are 
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considering, provided it satisfies some suitable decay conditions). The 
asymptotic values of the density are therefore the endpoints of the interval 
(3.13b), namely the stationary solution p~ connects the densities of the 
thermodynamically pure phases at the phase transition. Furthermore, as a 
consequence of the scaling properties of p~ [cf. (3.19)] it follows that for 
6-+0 p~ converges to the step function 1/2 + u*s(r)/2, as shown by Dal 
Passo and De Mottoni. 

The condition (3.21) arises also in the Cahn-Hilliard equation 

a r a ~ ~ a= 0)} ~ (  , t)=~r2 [ -C-~r2 ~(r, t)+ f'(tp(r, (3.23) 

where c is some positive constant, f '  is the derivative off ,  a n d f i s  a func- 
tion corresponding to some local mean-field free energy density, hence not 
necessarily convex; see, for instance, ref. 14 for a phenomenological deriva- 
tion of the equation and ref. 22 for a more mathematical discussion. Notice 
first that the equation does not change if f is modified by a term which is 
linear. To relate somehow (3.23) to our model we then choose 

f ( 0 )  = Fo(0) - 1/3b(1/2 -- ~p)2 (3.24) 

which is the same as in (3.13) except for the linear terms. In this way it 
becomes symmetric with respect to 1/2, just the same symmetry existing in 
the particle evolution. Finally recall that in our case b = 2. 

We can now look for stationary solutions which satisfy the condition 

#2 
-C-~r2 tP(r, t) + f'(qJ(r, t ) ) = 0  (3.25) 

and are antisymmetric without being identically equal to 0. The condition 
for this to occur is that f has a concave part and this gives the same condi- 
tion found before for the critical temperature. For temperatures below the 
critical one (/3> 2) the asymptotic values of the stationary solution are 
given by the minima of the free energy; hence they define the same interval 
(3.13b). Of course the specific form of the solution is different from that 
arising from (3.19); however, under the space scaling (3.14) they converge 
to the same step function found before. This suggests that under the space- 
time scalings (3.14) the integrodifferential equation (3.19) and the Cahn- 
Hilliard equations might have similar behaviors. 

While the above discussion establishes some relation between our 
model, the phase diagram, and spinodal decomposition, an analysis of 
what happens dynamically in the phase transition region is still lacking. 
Something can be said at a general level; we note first that the Green 
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Kubo formula for the diffusion coefficient predicts that D is proportional 
to the inverse of the compressibility, (22) so that one would expect that in 
the phase transition region the diffusion coefficient vanishes. Such a conclu- 
sion is confirmed in ref. 19, where a Ginzburg-Landau evolution for a 
system with short-range interactions is studied. This is also supported by 
numerical experiments; see, for instance, ref. 10. In our case, considering 
as fixed, the Green-Kubo diffusion coefficient is 

DGK(~ ) = Z~ -1 [Eu.~(j~(0, 1; 70)[70(0) - 7o(1)3) 

;o ] - 2  d t~  ~:~7(j,(O, 1; 7o)j./(x, x+ 1; 7,)) (3.26) 
x 

where 7, denotes the configuration at time t, s is the compressibility 
coefficient 

Z, = E~, (7o(0) x~ [7o(X) - E~,(7o(X))] ) (3.27a) 

while 

j~ (x , x+l ;7 )=c~(x ,x+l ;q ) -c~(x+l , x ;7 )  (3.27b) 

is the expected "current" through the bond x, x + 1. 
A proof that the process behaves diffusively in the hydrodynamic limit, 

~ 0, and that the corresponding diffusion coefficient is given by the 
Green-Kubo formula is, however, missing. The main problem is that in 
general the system is "nongradient," namely the current cannot be 
expressed as the lattice derivative of a continuous function: the system is 
gradient if 

jr(x, x+ 1; 7) =h.,(x+ 1; 7 ) -h~(x ;  7) (3.28) 

with h~(x; 7) being the shift by x of a continuous function, h~(0; 7). Notice 
that if the system is gradient, the integral in (3.26) vanishes, so that the 
diffusion coefficient is given by the equilibrium average of a continuous 
function. For gradient systems one can use the general approach of 
Guo etal. (9) to derive hydrodynamics. In the nongradient case new 
problems arise which have not been solved, so that a derivation of hydro- 
dynamics is lacking. 

While it is not clear how the Green-Kubo diffusion coefficient behaves 
in the limit 7 ~ 0, some general conclusions can be drawn. The integral 
term in the definition of DCK(7) is positive and, for each 7 > 0 ,  it is not 
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larger than the first term on the right-hand side of (3.26), because Do~: 
cannot be negative. Since this remains bounded when 7 --' 0 while the com- 
pressibility coefficient X(7) --' Go as 7 ---' 0 for values of p and fl in the phase 
transition region, then for such values of p and fi, D ~ ( 7 ) ~  0. This con- 
trasts with our results, because our diffusion coefficient is nonzero outside 
the spinodal region (i.e., up to and including the rnetastable region), but 
indeed there was an interchange of limits; Green-Kubo corresponds to 
taking first t ~ oo and then 7 --* 0, while in our process ? = a l ~ and time 
diverges like a-2. 

4. O U T L I N E  OF P R O O F S  

We consider the model introduced in Section2. The proofs of 
Theorems 2.1 and 2.2 are essentially based on a perturbative analysis of the 
semigroup generated by LN. In the traditional approach, which goes back 
to Boltzmann and to the derivation of the Boltzmann equation, one tries 
first to prove propagation of chaos. Remember that for large N, LN looks 
like a "small" perturbation of Lo, the generator of the symmetric simple 
exclusion process, for which the Bernoulli measures are the only extremal 
invariant measures. If propagation of chaos holds, we can establish the 
relation between the process and the limiting macroscopic equation. By 
using propagation of chaos we can in fact estimate the right-hand side in 
the identity 

d 
-~ E~(tl(x, t) ) = E~(LN~(X, t) ) (4.1) 

In this way we prove that E~(t/(x, t)) is close to p(x, t), where 

~ p(x,  t ) =  - [ J ( x ,  x +  1; t ) - J ( x -  1, x; t)] (4.2a) 

and the average current J(x, x +  1; t) through the bond x, x +  1 equals 

-5(V 1 p)(x,  t )+  ap(x, t)[1 - p ( x  + 1, t)] A(x,  t) (4.2b) J ( x , x + l ; t ) =  l + 

where 

A(x,  t) = ~ 5  [p(x  + i, t) - p(x  - i, t)] (4.2c) 
i = 1  

Here and in the sequel we denote by V +,  j >~ 1, the j-discrete derivative, i.e., 

V+ f ( x )  = ++j ~ [ f ( x  +_ j )  - f (x ) ]  (4.2d) 
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We also set A: as the j-discrete Laplacian, i.e., 

Ajf(x)  = V f V j  f ( x )  = V f V S f ( x  ) (4.2e) 

It only remains at this point to prove that the solution of (4.2) converges 
to the solution of (1.1) when e ~ 0. 

In several cases it has been possible to pursue this approach to the 
end, deriving in this way the macroscopic equations. In other cases, as in 
the analysis of several deterministic cellular automata, H H P  and FHP,  for 
instance, the mathematics looks too hard for a complete proof, yet the 
approach gives at least the possibility to "guess the right" hydrodynamic 
equations and to relate their transport coefficients to the microscopic 
features of the model. 

Unfortunately, in our case the whole argument as outlined so far leads 
to serious technical difficulties, just as in ref. 15, where a cellular automaton 
simulating the Burgers equation was studied. We follow the approach used 
in ref. 15 and also in the analysis of several other models (see ref. 3), which 
essentially reverses the previous strategy, proving first that the average 
occupation numbers are "close" to the solution of (4.2), and only then that 
propagation of chaos holds. In doing this we need to and shall characterize 
some support properties of the process, proving that not only the average 
occupation numbers~ but the configurations themselves are "close" to the 
solution of (4.2). 

Let us be more precise. For  any function f on f2 ~ we set 

Irfl[ = sup ~ P~ t/2(x ~ y) f ( y )  (4.3) 
y 

where P, is the semigroup associated to a single simple symmetric random 
walk which jumps on its nearest neighbor sites with intensity 1. Therefore 
Ilfll  is approximately the sup norm of f ,  f being obtained by averaging f 
over intervals of size e-1/4, intervals which are infinitesimally small with 
respect to the macroscopic scale e-1. We then introduce a time grid T, 
which depends on e: T=e  2+~ a n d / ~ > 0  is chosen larger than 2c~, so that 

N -~ ,,/-T--* 0. Because 2 N ~ N  -~ we have a mean field interaction and in 
such a case the process can be investigated in a very accurate way; see 
Proposition 4.3 below. Since we shall look at the process at times which are 
integer multiples of T, it is convenient to redefine T as 

T=ue -2+/3, u ~ [ 1 , 2 ]  (4.4) 

In this way we can represent any t ~> e -2+a as an integer multiple of T, for 
some value of u. 

822/63/'5-6-10 
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Given T as above, we define a new process with values in (2L Given 
a realization of the original process, we denote by 

9 = {t/0, t/r, t/2r,..-} (4.5) 

the sequence of configurations t/nr at times nT. If the process were replaced 
by the deterministic process defined via (4.2), then each t/(n+l)r would be 
the solution at time T of (4.2) with initial datum ~/nr. With this in mind, 
we introduce the following definition. For any _t/as in (4.5) (and distributed 
with the law of the process having generator LN) we define p(x, tl_t/) so 
that at the various times nT is just coincides with ~/nr, while in the time 
intervals [nT, (n+ 1)T) it solves (4.2) with initial condition t/hr. Then 
p(., tl_t/) is a new stochastic process whose discontinuities measure the 
difference between our original process and the deterministic one defined 
by (4.2). We shall say that p(x, tl_q) is "a semisolution of (4.2)" in the time 
interval [0, S], if it is eC-quasicontinuous in [0, S], i.e., if its right and left 
limits differ at most by e~: namely, p(x, t[~) is eC-quasicontinuous in the 
time interval [0, S] if for each n such that nT<<. S 

lim lip(', tl~)--qnril < e  r (4.6) 
t / '  n T  

Our main result is that the trajectories of the p-process are semi- 
solutions of (4.2) with probability which goes to 1 as e --* O. More precisely, 
we have the following result. 

P r o p o s i t i o n  4.1. There exists ( positive so that for any 2c~<fl, 
u ~ [1, 2], and z > 0 the probability that p is not e-~-quasicontinuous in the 
time interval [0, e-2z] vanishes faster than any power of e. 

For the proof we refer to refs. 3 and 4, where similar properties are 
proven. Actually Proposition 4.1 is a corollary of an estimate on the 
v-functions stated in Proposition 4.3 below. 

We have now the purely analytical problem of showing that all the 
semisolutions of (4.2) converge to the solution of (1.1) when ~ ~ 0 .  We 
have indeed avoided the a priori proof of propagation of chaos, but we 
have paid a price, namely the problem of proving that the semisolutions 
and not only the solutions of (4.2) converge as e ~ 0  to the solution of 
(1.1). 

By the assumptions on the initial measure #~ and by using the 
Chebitchev inequality, it is not difficult to see that for any k there is ck so 
that 

#~(][ 7~(ex) - r/o(X)l I > e ~) < c~ zk (4.7) 
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[-cf. (2.7)]. We can therefore neglect the cases where qo in _t/is not e ~ close 
to the initial density profile, in the sense of (4.7). We shall prove in the next 
section the following crucial proposition. 

Proposition 4.2. There exists ~ > 0 such that for any ~ > 0 and for 
all n ~> 1 such that nT<~ e-zz 

lim sup If~(ex, ~2l)-p(x, tlp)l ~<cC (4.8) 
t ~ n T  x 

for any semisolution p(x, tl_q) of (4.2) such that IPf~(ex)-~/o(x)ll ~<e c. 
[-The constant c in (4.8) may depend on z.] 

To derive propagation of chaos and to conclude the proof of 
Theorems 2.1 and 2.2, we still need another ingredient, the estimate on the 
v-functions which is given below in Proposition 4.4. The v-functions are 
defined as follows. Let _x be a subset of [1, 2e -2] consisting of n/> 1 distinct 
sites, xl ..... x, .  Then 

Yen(_ x,  /I ~) ~ ~ /  [?](Xi, t ) - - D ( X i ,  t l q ) ]  
i= 

(4.9) 

where p(x, tit/) denotes the solution of (4.2) with initial datum ~/, E; 
the expectation when the initial configuration is t/, and P;  its law. An 
exponential decay on n for the v-functions has been proven for the 
symmetric simple exclusion process (with p defined accordingly) and for 
other processes which are "small perturbations" of the exclusion process. 
The proofs extend easily to our case, so we state without proof the following 
proposition. 

Proposition 4.3. 
there exists c n so that 

For any /~ > 2e the following holds. For any n 

(4.10) 

for all _x consisting of n distinct sites, for all r /and for all t ~< e 2 + ft. 

Proposition 4.1 is a corollary of Proposition 4.3. One needs in fact to 
compute 

P ~ (  ~P~-~/4(x--*y)[rl(y)-p(y, Tltl)] >e  ~) (4.11) 

By using the Chebitchev inequality with arbitrary high moment and the 
estimate (4.10) we prove that if ~ < 1/8 the probability in (4.11) is smaller 
that any positive power of e. We can then extend the result to arbitrary x; 
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here we use that the volume size is finite, 2e -2. In the same way we obtain 
the uniformity over times ~<e 2~. 

Proof of Theorem 2.1. Proof  of (2.8). Given r>O,  we fix u 
[cf. (4.4)] so that e 2~ = ( K +  1)T. We take the conditional expectation by 
fixing 

~ ( I T ) I ~ K  

We then have 

~ ~(x,, (K+  1)T) 
i 

We add and subtract O(x~, (K+ 1)T)IU), where 

_~ = {~o,..., ttK~} 

By (4.10) we have 

lira sup 
8 ~ 0  Xl,.. . ,X n 

(4.12) 

where 

L : = e - l - - l - - R  (4.13b) 

We refer to the literature (see, for instance, ref. 11) for an existence 
and uniqueness theorem for (1.1) (under the assumptions we have on the 
initial data) and for a proof that such a solution is a C ~ function bounded 
with all its derivatives. We believe that also (4.13a) can be found in the 
literature, but we cannot give precise references. In any case, proving 
(4.13a) is a useful warmup for the more intricate proof of Proposition 4.2. 

E~ q(x~, (K+  1)T 

(_H1) '  - ~  p(xi, (K+  1) r l~)  = 0  
i 

By using Propositions 4.1 and 4.2 we obtain the proof of (2.8). 
We prove that for any k, R, and T there is a c such that for all e small 

enough 

sup supL  k kf~(r, t ) - f ( r ,  t)[ ~<c (4.13a) 
trl<~R t<~T 
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We start by an integral representation for the solution to (1.1), known 
as the parametrix representation (n) (space and time below should always 
be considered as macroscopic): 

f (x ,  t) = f~ dy fg(x,,)(y _ x, t)fo(Y) (4.14a) 

+ f~ ds f dy~X"(y-x , t - s )~{[D(y , s ) -D(x , t ) ]~}  

where 

1 e_ZZ/2D(x,t)s (4.14b) c~(x'0(z, s )=  [-2~zD(x, t)s] 1/2 

1 
D(x, t )=-~-a f (x ,  t ) [ 1 - f ( x ,  t)] (4.14c) 

We can write an analogous equation for ~7~, namely 

7~(x, t) = f~ dy ff(x,O(y _ x, t)?~o(Y) 

+ ds dy ff(x,t)(y_ x, t -  s) ~y [/5(y, s) - D(x, t)] - -  

(4.15) 
~7~(Y'ay s)} 

where/5 is defined as in (4.14c) with freplaced byj  ~. We rewrite (4.15) by 
adding and subtracting D(y, s) in the difference/5(y, s ) -  D(x, t). The time 
integral term in (4.15) becomes then, after integrating by parts, 

t 8 t [ D ( y , s ) _ D ( x ,  t)] 8 

a?~(y, ~) a _~)) 
-- [/5(y, s ) -  D(y, s)] a-m--f - -  Of G(X't)(Y- x, t 

/ 

An analogous expression is obtained from (4.14a). We write 

g~(x, t)= lYe(x, t ) - i f ( x ,  t)l (4.16) 

and after taking the difference between the expressions for f and )7~, we 
obtain 

g~(x, t) < fR dy ff(x,O(y _ x, t) ~(y ,  0) 

+ ds d y J V ' ( X ' ~  g~(y,s) (4.17) 
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where 
c 3 [ / y _ x l  ]i 

y*,'~(y-x, t-s) (t_~)l/2,_Z k(t_~>2j ~(*,'>(y-x, t-s) (4.18) 

and c is a constant whose value changes from line to line. To derive (4.17) 
and (4.18) we have used the following estimates: 

ID(y, s ) -  D(x, t)l <~ c E t -  s + l y - x l ]  

[in fact, by the maximum principle we know that the solutions of (1.1) are 
bounded from above and below by the same bounds they have at time 
zero: therefore, from the assumptions on the initial conditions we know 
that D(x, t) is bounded from below away from zero, while it is obviously 
~< 1/23 

@2 fq(x,t)(y- x, t - s )  

1 [ lY--Xl2 
I 

D(x, t ) ( t -  s) kD(x, t ) ( t -  s) J 
8 2 

[D(y, s ) -  D(x, t)] 8y~- ~ N(x" ) (y -  x, t - s )  

' [L i,- IYl 
<" ~ ( t - s )  '/~ ,=1 \(i--TfrPJU I ~ x " ) ( Y -  X' t - s )  

(recall that t ~< T) 

[D(y, s)-D(x, O] ~{r t-s) 

1 l Y - x l  
<<. c ( t _  s)l/~ ~ f~(x")(y-  x, t - s )  

8f~(y, s) a G(X,,)(y _ x, t - s) [/5(y, s ) - D ( y ,  s)] 8 ~  8y 

g~(y,s) l y - x l  
C ( t  - -  S )  1/~ ()7S~2 ~ ( x , t ) ( y  __ X,  t - -  S )  

We iterate (4.17), obtaining a series of terms, the nth one being 

fodSl...fo" 'ds. l dy,'-.Idy.+, 

[,0 ,] X J I / ' ( Y J - " s J - ' ) ( y y - - Y y _ l , S j - - S y _  I 
1 

x N(Y"")(y,,+ 1 -- Y,,, s,,) g~(y,,+ 1) 
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where yo=x, So= t. We now remark that g~(Yn+l, 0 ) = 0  unless [Yn+l] > 
L +  R [cf. (4.13)]. Then the above term will vanish if all 

L 
[Yj+I-Yj[ < - -  (4.19) 

n + l  

so that we can bound it by replacing g~(Yn+l, 0) by a suitable constant 
times the characteristic function that for at least one value o f j  the condi- 
tion in (4.19) is not fulfilled. Therefore the nth term above is bounded by 

x dsl ... dsn (t-$1) 1/2'''(Sn_l--Sn)--l/2 (4.20) 

where D is the infimum of D(x, t). We multiply (4.20) by L k [cf. (4.13)] 
and we get the following upper bound for the resulting expression: 

c"(n+ 1)[(n + 1)2 4DT]  k C 

x dsl. . ,  d s ~ ( t _ s l ) - m . . . ( s ~ _ l _ s ~ )  1/2 (4.21a) 

where 

C = max x%-X2 (4.21b) 
x~>0 

Since the n-fold integral in (4.21a) equals 

tn/Z~m f(m!) i if n = 2 m  (4.21c) 
~2m+l[ - (2m+l) ! ! ]  1 if n = 2 m + l  

then the sum over n of (4.21) is finite and bounded for t ~< T. We have thus 
completed the proof of (4.13) and of Theorem 2.1. | 

Proof of Theorem 2.2. The proof is very similar to that in ref. 15 for 
an analogous property, so we shall just outline it. The first step is to con- 
trol the sup. Since time is continuous, we introduce a time grid of length 
0; 0 will be chosen very small, i.e., e to some high power. Let ~r be the 
following event: there is a time interval I =  [nO, (n + 1)0] which has a non- 
empty intersection with the time interval [e-2z' ,  e 2z"] and in I it happens 
twice that a particle moves starting from a site in the interval centered at 
the origin and of size 4e-1R. Since the jump intensities are bounded; we get 
that 

~--2 
~'(d)<~c(Oe 1 ) 2  

0 
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where the constant c depends on R and z". By taking 0 equal to a to a 
sufficiently high power we can make the probability of ag smaller than any 
given power of 5. Using this, we can replace (2.10) by 

lim P~( sup sup IM(x, t, e-~)l >2er = 0  (4.22) 
g ~ O  t=nO:T'<~e2t<~7; " [x]~<8 IR 

because outside d in a time interval [nO, (n+ 1)0] the M's in (4.22) can 
change at most by the displacement of just one particle by one site. By 
choosing 7/2 > ~ we then obtain (4.22), at least for e small enough. 

By taking the sup out of the probability, we are reduced to proving 
that 

8 - 2,.g ,t 
g lira - - 2 e - ~ R  sup sup P~([M(x, t, e-~)l >2e~)=O 

8 ~ 0  0 t=nO:r '<~82t~'c  " [xl~<a IR 

(4.23) 

We estimate the above probability by using the Chebitchev inequality with 
power 2n. Since M is a sum of terms, we will obtain a sum over 2n sites, 
Yl ..... Y2,, of products of 2n factors of the form DI(Yi, t ) - f ( w i ,  e2t)]; cf. 
(2.9). There are two extreme cases; one is when the Yi are pairwise equal, 
in which case we obtain a bound of the form c~ 2n~ +ny: if 7/2 > 4, by taking 
n large enough we can make this term win against the diverging factors in 
(4.23). 

The other extreme case is when all the yi are different (all the other 
cases can be examined combining the arguments needed for the two 
extreme ones). Given t, we choose uE[-1 ,2]  so that t = ( K + I ) T  and 
T=ue -2+~. By using Proposition4.1 we can neglect the 3 for which 
p(x, t[_r/) is not a semisolution. For the others we can use Proposition 4.2 
[-assuming that ~ in (4.8) is larger than ~] and the first part of Theorem 2.1 
(already proven) to replacef(ex, ezt) by p(x, t[q), where the sequence ~ is 
stopped at KT. We now take the conditional expectation on the process up 
to time KT and we use Proposition4.4. We need to assume now that 

< 1/8. In this way, by choosing n, i.e., the power in the Chebitchev 
inequality, large enough we obtain the desired estimate. We leave out the 
details. | 

5. PROOF OF PROPOSITION 4.2 

To prove Proposition 4.2 we use the parametrix method, proceeding 
as in the proof of Theorem 2.1. We are indebted to S. Molchanov for 
suggesting this approach and for many helpful discussions. We do not have 
here the continuous equation (1.1), but a discrete approximation, Eq. (4.2): 
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nevertheless the method extends easily to this case. We shall write an 
integral equation for the solution to (4.2) in terms of a semigroup 
generated by replacing the nonlinear term p ( 1 -  p) by i f ( 1 - i f ) ,  where f f  
is related to the solution of (1.1) and it is computed at a conveniently fixed 
space-time point, namely we are "freezing the environment." This is not the 
whole game, because we need to study not only the solutions, but also the 
semisolutions of (4.2); cf. Section 4 for notation. This, however, will only 
give an extra term in the integral equation that we can control by choosing 
fi, hence c~, small enough. 

We start by showing that the solution to (1.1) solves approximately an 
equation similar to (4.2). 

I . emma  5.1. LetaT~(r, ~) be as in Theorem 2.1. We set 

i f(x,  t)=~7~(ex, ~2t) 

and we define 

q~(x, t) -- ~ G~'O(z - x, t) if(z, O) 
z 

s +a ds~G(~") ( z -x ,  t -s)[F~(x,  t ) -F~(z ,s)]  Auff(z ,s)  
z 

- a fo' dS ~ G~ '~  x, t - s )  
z 

x ~ 5  [ f f ( z - l + i , s ) - f f ( z - l - i , s ) ] V ~ - F ~ ( z , s )  (5.1) 
i ~ l  

where V~ and AN are defined in (4.2),  

F~(z, s)=i f (z ,  s)[1 - i f ( z +  1, s)] (5.2) 

and the evolution kernel G~ '~ is the solution of the following equation: 

0-~-- (y' s) - 2 1 G~'~ s) - aFt(x, t) ANG~'~ s) 
(5.3) 

G(NX'O(y, O) = 6(y) 

where 6(y) denotes the function which equals 1 at n(2e 2 + 1), n e Z ,  and 
0 otherwise. Then given any v > 0 ,  there is a c such that for all x, all 
t ~< ~-2~ ,  and all e > 0 

{if(x, t ) -  qg~(x, t)] ~< ctg 2 +~ (5.4) 
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Proof of Lemma 5.1. We have 

Ot A lf~(x, t ) -  aFt(x, t)ANfe(x, t ) -  aI'(x, t)glF~(x,  l) 

= e ' ( x ,  t) 

where 

'L r(x,t)=~ [f'(x-l+i,t)-f~(x-l-i,t)] 
i = 1  

lEe(x, t)l ~ c83N 

as follows from a Taylor expansion up to third order and from the fact that 
)7~ has third derivatives which are uniformly bounded (c is a suitable 
constant). By using the variation of the constants formula with respect to 
the semigroup G~ '') we then obtain that 

;o If~(x, t)-q~'(x, t)i ~< ds ~ IG~")(z-x ,  t - s )  U(z,s)l  
z 

By using the above estimate on E ~ and the fact that for any given z > 0 
there is a constant c such that 

IG~")(z-x ,  t - s ) l  ~ c  
z 

for all x, s ~< t ~< e-2z and e > 0. This statement will be proven in Section 6; 
therefore Lemma 5.1 is proven. | 

Proof of Proposition 4.2. We rewrite (4.2) as 

c3p (x, t )=  1 Ot - ~ A l p ( x , t ) - a V ( { p ( x , t ) [ a - p ( x + l , t ) ] A ( x , t ) )  

where A(x, t) is defined in (4.2c). 
Notice that the maximum principle is not valid for Eq. (4.2), so that 

even though p(x, nTis_)~< 1 for all x and n, we cannot conclude that this 
holds also for p(x,t[q_) at all t. Let t o > 0  be such that for all t<~to, 
p(x, tl_t/)~< 2. We shall prove in the sequel that for any fixed T >  0 we have 
that Ip(x, tlq_ ) -  f~(x, t)L <~ ce ~ for some c~>0 and all t <~ to, t <~ ~-ZT. Since 
f ~ <  1 [because of the maximum principle, which applies to (t .1)]  we have 
that up to the minimum between to and e-2T, p(x, tlt/)~< 1 +ce% so that 
for e small, to >~ e 2T. For this reason we can and shall assume hereafter 
that p(x, t]~)~<2. 
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We add and subtract 

aFt(x, t)V~A(x, t) 

and we obtain 

ap (x, t )=  1 Ot ~A,p(x, t ) -af~(x,  t)V~A(x, t) 

-aV;[{p (x ,  t ) [ 1 - p ( x +  1, t ) ] -g~ (x ,  t)} A(x, t)] 

- A ( x -  1, t) V2F~(x,  t) 

Taking into account that 

V~A(x, l) = Z~Np(X , t) + NVNV~p(x) 

we write an integral representation for p with respect to the same evolution 
kernel G~ 't/ which appears in Lemma 5.1. Namely, given _r/ as in Proposi- 
tion 4.2, we have, for kT<t<~(k+ 1)T, 

p(x, t ) = ~  a~,O(z- x, t -  kT) q(z, kT) 
z 

+a dsJ~G~' t ) ( z -x , t - s ) [F~(x , t ) -F~(z , s ) ]Aup(z , s )  
T z 

--a d s ~ G ~ ' ~  
T z 

xV; [{p(z ,  s ) [ 1 - p ( z +  1, s ) ] -F~(z ,  s)} A(z, s)] 

f2 - a  d s ~ G ~ ' ~  
T z 

- a  ds~ G~"(z -x , t - s )~[V; -VNp(Z , s ) ]F~(z , s )  (5.5) 
T z 

Here and in the following, as shorthand for p(z, sl_t/) we use p(z, s). We 
define 

h~(x, t)= f '(x,  t ) -p(x ,  t) (5.6) 

Then, taking into account Lemma 5.1, we have 

h~(x, t ) - Z  GkT")( z - x ,  t)[q(z, k T ) -  f~(z, k T) ] 
z 

t 6 

Z Z 
i = l  

<~c(e ~/2 ~+e ~+~) (5.7) 
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where c is a constant (whose value changes from line to line) 

Al(Z, s)= EFe(x, t ) -  F~(z, s)] ZJNhg(z, s) (5.8a) 

[A1 comes from the difference between the first integral on the right-hand 
side of (5.1) and that on the right-hand side of (5.5)1 

Eh~(z - 1 + i, s) - he(z - 1 - i, s)] V 1 EFe(z, s)] (5.8b) 
1 N 

A2(z, s) = ~ 5  iEl_ 

[A 2 c o m e s  from the third integral in (5.5) and the second one in (5.1)1 

1 i~l [ h e ( z + i , s ) - h ~ ( z - i , s ) ]  g e ( z , s )  (5.8c) 

--he(z, s)[1 + J h e ( z +  1, s)] 

A3(z,s) 

H~(z, s) 

- f e ( z ,  s) h~(z + 1, s)-he(z, s ) f e ( z +  1, s) 

t A4(Z,S)--~-~ I [ f ~ ( z + i , s ) - - f e ( z - - i , s ) ] I I e ( z , s )  (5.8d) 
i = 1  

[A 3 and A 4 c o m e  from the second integral in (5.5), after 
subtracting f e to the corresponding p] 

1 
As(z, s) = ~ [V1Vuhe(z, s)] f~(z ,  s) (5.8e) 

1 
A6(z, s) = ~ EV(Vuf~(z, s)] F~(z, s) (5.8f) 

adding and 

A 5 and A 6 take into account the contribution of the last integral in (5.5). 
Finally, the term ce 1/2-~ on the right-hand side of the inequality (5.7) arises 
from our having changed the interval of integration to [ k T + a  -~/2, t]: 
since the integrand can be bounded by c/N, we then get the estimate 
CC, 1/2 ~. The term ce ~+~ comes from (5.4). 

Furthermore, we have that 

G ~ ' ~  x, t - k T ) E f l ( z ,  k T ) -  f~(z,  k T ) ]  
z 

= Z G(~ ' ~ z - x, t - kT )  h(z, kT )  
z 

+ • G~ . ' ) ( z - x ,  t - kT )E~(z ,  kT)-p(z, kr; q(,_ ~)T)] 
z 

(5.9) 



A Particle Model for Spinodal Decomposition 961 

where p(z, t; rl) is the solution of (4.2) at (z, t) when the initial datum is t/. 
For the last term in (5.9) we get 

~z G(~")(z- x, t -  k T)[tl(z, k T) - p(z, k T; <~ ce r I ) T ) ]  q(x 

To prove (5.10), we write 

G~")(y, s) = eBseAs(y) 

(5.1o) 

where 

A = ( �89 K) A1 

B= KA l -aFt(x ,  t) AN 

�89 > K> a sup F~(x, t) 
( x , t )  

[the choice of K above is made possible by the assumptions on the initial 
datum and the validity of the maximum principle for (1.1)]. We shall prove 
in Proposition 6.1 that for all s ~< e-zr  and e > 0 

leB~(y)l ~< c 
Y 

Using this, the fact that r/ is chosen as in Proposition 4.2, and that 
t - k T >  e-i/2, we derive (5.10). By (5.10) we then have from (5.7) 

h~(x, t) - ~ G~ ~'t)(z - x, t) h~(z, kT) 
z 

t 6 

+ark ds ~ a~. ' ) (z -  x, t -  s) ~ Ai(z, s) 
T + e  1/2 Z i = 1  

cmax{g 1/2 ~,e ~+/~,e r (5.11) 

Iterating (5.1 1), we get 

h~( x, 6 fl t )+a ~ d s~  G ~ ' * l ( z - x , t - s )  Ai(z,s) 
i =  1 (t)  z 

~<cmax{~l/2-~ ~, ~c-~, ~}  (5.12) 

where 
I n ( t )  

l(t)= [0, t] U [kT, kT+e x/2) (5.13) 
~ 0  
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and n(t) is the largest integer such that n(t)T< t. By choosing e and 
positive but sufficiently small, we make the right-hand side of (5.12) 
infinitesimal, as e ~ 0. From (5.12) we get 

6 ~i ~ Lh~(x,t)l<a ~ ~ ds G ~ ' ~ ( z - x , t - s )  Ae(z,s) 
i=  1 (t) 

+ c max{e 1/2- ~- ~, e :-~, e ~ } (5.t4) 

As in the proof of Theorem 2.1, we shall estimate the integral in (5.14) 
by integrating by parts the derivatives which are present in the A, terms. 
Doing this, we get derivatives acting o n  GN, which we are able to estimate 
as in the continuous case; this will require some lengthy computations 
which are postponed to Sections 6 and 7. Setting 

h ,  = sup Ih(z, s)l 
z 

we have 

E 1 G%~")(z-x , t -s )Al(z ,s )  < ~ c  ( / - - s ) 1 / 2  q- E2 h s (5.15a) 

which will be proven in Lemma 7.1, and 

~z G~"~(z-x, t -s)  A2(z, s) 

N 
e ~ G ~ , t ) ( z _ x , t _ s  ) ~ [h~(z+i,s)_h~(z_i ,s)  ] 

i=1  
N 8 

=N--~hs 2 ~ IG~,"~( x - i - z ,  t-s)-G~,"~( x+i-z ,  t-s)l 
i ~ l  z 

h, 
<. ce (t - s )  1/~ (5.15b) 

The last inequality comes from Proposition 6.4. 
The next estimate holds for kT + ~- 1/2 < s << (k + t ) T: 

~z G~'t)(z-x,  t - s )  A3(z , s) 

h, [ 8~ +h~r  ~1--~-- E1-2g~hs ] 
<~c(t_s)l/2l_(s_s 2~h,~+ J 

(5.15c) 
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For a proof see Lemma 7.2 (proven under the assumption that c~ < 1/2 and 
that 6 is a suitably small positive constant). We also have 

~ G(uX't)(Z-- X, t--s) A4(z, s) 

h~ 
~< c~h~ ~ Iv; G~,'~(~- x, t - ~)1 ~ ~ ( t -  s) ~/~---~ 

z 

which is obtained from Proposition 6.3 and from the fact that 

N 

N-2 2 I[ff(z+i,s)--ff(z--i,s)]] <~ce 
i = 1  

Integrating by parts, we easily obtain that 

(5.15d) 

~z G~'t)(z-x, t -s)  As(z, s) 

+EZ IG~'t)(z-x, t - s ) l }  
z 

<~5 (t_ s)l/2 ~-~hs (5.15e) 

The last inequality follows from Propositions 6.1 and 6.4: 

~z G~")(z t -s)  A6(z, s) <~ ce 3-~ (5.15f) ~ X ~ 

which easily follows from Proposition 6.1. We introduce the function 

v(s)=kT, kT<~s<(k+l)T 

Then, collecting the estimates in (5.15), we have from (5.14) 

h;<~cf, dshs[ 1 ( eC+hv~s~ (,I (t_s)l/2 8+ [ s - v ( s ) - ~  1/211/2 

+el-~-2ah:+el-2~h~)+e2] 

+cmax{e 1/2-~ ~,er ~,e ~} (5.16) 
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We now fix C~> 1 as in (5.20) below and we prove that it is a contradiction 
to assume that there is a first time t 1 ~< ~-2r for which h~l >~ Ce ~, where 

2 = min{ 1/2 - ~ - /3,  ~ - fi, ~} (5.17) 

In the integral in (5.16) we bound the factors h~ by h,(Ce~) ~ ~, i~> 1, and 
we get 

fl 1 h~ ~<c'e dshs (1 +4~7C2) + cg 2 (5.18a) 
(t~) ( /1  - -  S) 1/2 

? = m i n { 2 2 - - 2 ~ - ~ ,  2 - 2 6 }  (5.18b) 

C t 

c'~>l i ssuchthat  c '>c and ce<~(tx_S,1/2) (5.18c) 

We iterate (5.18a) and obtain a series whose terms we estimate using 
(4.21c). We get after some straightforward computation 

h~ <~c'e)exP I2Zc'2(l +4C2gp)21[l + 2c'(l +4C2g:') (5.19) 

For e so small that 

(1 + 4C2~?) ~< 2 

(5.19) contradicts the assumption that h~l >i Ce ~, because 

C = 2 c ' e x p ( ; ~ c ' 2 4 ) ( l +  2c'2z ~/2) (5.20) 

6. U N I F O R M  /1 ESTIMATES ON G(N ' ' t )  

We consider the semigroup exp{ANt}, where 

AN=AI-bA N 
0 < b < l  (6.1) 

N =  integer part of e ~ +~, 0 < ~ < 1  

acting on the set of all the periodic functions on the lattice which have 
period IF~[--2~ -2 (we only consider values of ~ for which e 2 is an 
integer). We are going to prove the following proposition. 



A Particle Model for Spinodal Decomposition 965 

Proposition 6.1. 
and all t ~< e- 22 

For any given ~ > 0 there is c so that for all e > 0 

sup ~ leAu~(y, X)I ~< c (6.2) 
Y x = l  

where exp{ANt}(y, x) denotes the kernel of the operator exp{Aut}. 
We present here a proof due to P. M. Bleher (except for some minor 

modifications); we thank him for this and for many helpful discussions. 
Recall that the kernel exp{Aut}(y, X) is defined as 

eAN'(y, x)= (fix, eAS'6y) 

where cSx(z ) equals 1 if z = x + n IF~[, n ~ 2, and 0 otherwise. Notice also 
that exp{ANt } is not a Markov semigroup, because b > 0 ;  hence 
exp{ANt}(y,x) is not necessarily positive. Finally, using translational 
invariance, we may and shall fix y = 0 in (6.2). 

A last remark before the proof of the proposition, namely that we can 
apply it to the cases considered in the previous section because G~ 't) 
is as in (5.1). In fact, according to our assumptions, we can take 
b = 2aF(x, t) < 1 because the pair (x, t) is fixed. 

The proof of Proposition 6.1 will be obtained by studying the 
spectrum of exp{ANt}. Recalling that we consider periodic functions with 
period [F~[ =2e -2, we call F~=  [1, 2e 2] and we introduce the Hilbert 
space 

12(F~)={f:F~N, ~ ]f(x)]2<oo} 
x ~  F ~ 

The eigenvectors of A N are the harmonic functions on the lattice 

1 k x Ok(X)--lF~ll/eexp{--i2n~l } (6.3) 

For k eF ~ they form an orthonormal basis providing the usual space- 
momentum representation: 

f ( x ) =  ~ r (6.4a) 
k ~ F  ~ 

J~(k)= ~ ~k(x)f(x) (6.4b) 
x ~  F a 

822/63/5-6-11 
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The spectrum of A N is therefore 

b 

- 4  (sin 2 ]F~lxk b 7ckN'] N2 sin2 i - ~ ] ,  k e F  ~ (6.5) 

To underline the dependence on b we shall sometimes write 2N(k; b). It is 
not difficult to see that, for all k e F ~, )cs(k ) <~ 21(k) ~< 0. We shall, however, 
need and prove a weaker statement, as follows. 

Lemrna  6.2. For any 0 < b < b ' <  1 and for ~ small enough the 
following holds. For all k e F~: )cu(k , b) <. 21(k, b') ~< 0. 

Proof. Obviously 21(k,b')~<0 because b ' < l .  By (6.5) the proof 
that 2N(k,b)<<.21(k,b') is reduced to proving that for any 0 < b < l ,  
.~u(k, b ) ~  O. We start by considering the values of k for which 

~k N rr ~k rc 
Ir~l ~<5' i.e., ~ < ~  

We call ~ such an interval. Given any 0 < d <  1, there exists N so large 
that for k e J1 

Hence 

sin 2 

rck ~k 
sin ~ / >  d IF-- ~ 

~zk b . 2 ~ k N  { dg](. ~ 2 -- b . ~kN  
sm T ~ / >  sin2 

iF~l U 2 \]F~I,/ ~ 5  ir~l 

which is nonnegative if we choose d>~ b (sin 2 x <~ X2). In the next interval, 
J2, of values of k 

rc ~ k N  

the last term on the right-hand side of the last equality in (6.5) takes on 
the same values as in J l ,  while the other term on the same side of the 
equality has values larger than in J1. The same keeps happening until 
k~< IFq/2: therefore (6.5) is proven for such values of k, and by symmetry 
the proof extends then to all the values of k. | 
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By translational invariance we fix y = 0  in exp{Axt}(y, x), which we 
will write a s  GN(X; t). We have 

1 
Gx(x;t) {F~]I/2 ~ e~'~k)'~k(x) (6.6) 

k ~ F  ~ 

~k(x) being defined in (6.3). Its l z norm is 

1 / , \ U2 
]IG~( .; t)ll~- lV~l 1/~ ~k~r~ e2~N~k)') (6.7) 

Given any b' < 1, there is c so that 

X~- E exp{'~l(k, b ' ) t }  < r 
Ivq 

for all e > 0 and t ~< e-2~, because the above is the Riemann sum of an 
integrable function. Using Lemma 6.2, for e small enough we get that 

C 
][GN( ", 0112 ~< tl/4 

Hence 

Z IGN(x; t)l = Z IGN(x;t)l + Z FG~(x;t)l 
x x~,/7 x>,/7 

~ t l / 4  ] I G N ( ' ; t ) ] I 2 +  E ]GNU, x)] 
x > ~/7 

In order to bound the last sum, we mimic the proof for the continuous 
case, where one can derive the decay in x of G,v(t, x) from the smoothness 
of its Fourier transform by the Riemann Lebesgue theorem. With this in 
mind we write 

V ~ C - iks iks 

C + i s -  1 

where the derivative acts on the k variable. We have also set s =  2~x/IF~]. 
We integrate twice by parts the right-hand side of (6.6). Taking into 
account that 

I(e +is-  1)t ~>s,  0~<s~<~ 

we have the following estimate for GN(X; t), Ixl ~< IF~]: 

r 
]GN(x; t)J ~<~5 ] F~] ~ ]Jle<~(k~'r (6.8) 

k ~ F  ~ 
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where, again, A 1 acts on k. We write 

zJ 1 eXN(k)t =" e~(~)tEe ̀ v?;~r + e ,v?;,(k~ _ 2] 

Since 

tk 
ItV~ ZN(k)I <~ c ~ <~ cr (6.9) I/-r- 

we get, using Lemma 6.2, 

]A l e;N(k)~ r <<. ce  "~l(k'b')t [ tA 
k 

( tk "~2~ (6.10) 
1Zu(k)+\lF~12 j J 

We have 

t 
ItA1Zu(k)l <~c 

I r~ l  ~ 

and, for ~zk/lF~l ~< zt/2 (by symmetry we can restrict ourselves to this case) 

k 2 
21(k, b')t  <~ - c t  IF~t ~ 

We then get from (6.8) 

c IF~I ~ e_Ctk2/ivq2 [- t [ tk "~2 7 

Call 

3=,5 
ir~l 

Then 

c 6 x / 7  ~ e_C~a~/2El+(&)2] (6.11) ]GN(X; t)l ~<X ~ k~r~ 

Since the sum over Ix[ ~> x/)- of 1Ix 2 gives a factor 1/x/t,  we get a uniform 
bound on the 11 norm of G N ,  SO that the proposition is proved. | 

We conclude this section by proving a corollary of Proposition 6.l 
which establishes properties used in Section 5. 
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Proposition 6.3. There is a constant c so that the following holds 
(we are using same notation and assumptions as before in this section): 

ProoL 

C 

]V~GN(y; t)F <~ (t + |)1/~2 (6.12) 
y 

C 

F, IANGN(Y; t)l <<'t +~ (6.13) 
.v 

r 

IANGN(y; t)l Ix--yl <<'(t+ 1) ' 7 ~  (6.14) 
Y 

We write 

Gn(y, t ) = ~  eBt(z) era(y-z)  
z 

where 

H=hA~, h > 0  

B= (�89 t)A N 

l _  h > a sup F~(x, t) 
(x,t) 

and exp{Bt}(z) denotes the kernel of the operator exp{Bt} between 0 and 
z; here we are using translational invariance; exp{Ht}(z) is defined 
analogously. We have 

C 

IV?GN(y; t)l ~ ~ leBt(z)l ~ IV?em(y-  z)l < (t + 1) 1/2 
y z y 

The last inequality comes from the uniform ll bound on e B' proven in 
Proposition 6.1 and the following classical estimate on symmetric random 
walks: 

[em(y)- G,(y)F <<. c_f_ (6.15a) 
>, ,,/7 

where 

1 y2/2ht 
G,(y) - (2~ht)l/2 e (6.15b) 

Equations (6.13) and (6.14) come also from classical properties of random 
walks; we give below an outline of the proof of (6.13), just for the sake of 
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completeness. By the previous argument we reduce ourselves to proving 
(6.13) with GN replaced by exp(Ht). We have to compute 

S 2 lem(y + N) + em(y - N) - 2em(y)l (6.16) 
Y 

Calling 
M , ( y ) = e m ( y ) - G , ( y )  

and setting s = t/2, we have 

era(y) = ~ [M,(z) + G,(z)] [ M,(y - z) + Gs(y - z)] 
2 

We develop the product of the two square brackets; the terms with two 
M's when summed over y, by (6.15a), give the desired estimate, c/t. The 
terms with two G's when inserted in (6.16) give again the c/t bound, as can 
be easily checked. We are left with the terms having an M and a G factor. 
By a change of variables we can always write first the M and then the G: 
when inserted in (6.16) this gives 

~, M~(z) 2 N - 2 IG,(y + N -  z) + Gs (y -  N -  z ) -  2 G , ( y -  z)l 
z y 

which is also bounded by c/t. 
Similarly we prove (6.14). | 

7. T E C H N I C A L  L E M M A S  

Lemma 7,1. Let G~")(y, s) be the solution of (5.3); then 

~ G%~") (y - x , t - s )A l ( y , s )  <~[g/(t-s)l/'2+e2]h, (7.1) 

where AI(y, s) is defined in (5.8a) and hs= sup, Ih(y, s)l. 

Proof. Integrating by parts, we have 

G~'O(y-x ,  t - s ) A , ( y ,  s) 
Y 

= ~  A N G ~ " ) ( y - x , t - s ) [ F ~ ( y , s ) - F ~ ( x , t ) ] h ~ ( y , s )  (=-I,) 
Y 

+~, G ~ " ) ( y - x ,  t - s )AN[F~(y ,  s ) -F~(x ,  t)] h~(y, s) (-12) 
Y 

+~VTvG(uX")(y-x, t - s ) V ~ [ F ~ ( y ,  s ) - F ' ( x ,  t)] h"(y, s) (=I3) 
Y 

+ ~ V + G ~ ' t ) ( y - x , t - s ) V ~ [ F ' ( y , s ) - F " ( x , t ) ] h ' ( y , s )  (~I4) 
Y 

(7.2) 
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By the smoothness of F ~, we have that 

[111 <~ C Z ]ANG!~'t)(y- x, t -  s)l (e [ y - x l  + e 2 I t -  sl ) hs 
Y 

<~ c[eh,/(t - s )  1/2 ~- e2hs] (7.3a) 

The last inequality comes from (6.13) and (6.14) stated in Proposition 6.4. 
Furthermore, from Proposition 6.1 we have that 

1121 ~< ce2h, (7.3b) 

and from (6.12) of Proposition 6.3 

1131 ~< cehs/(t - s) 1/2 (7.3c) 

1/41 ~< cehj(t - s) 1/2 (7.3d) 

Collecting the estimates (7.3), we prove (7.1). | 

I . omma 7.2. Let G(NX")(y,s) be the solution of (5.3); then for 
k T < s ~ ( k +  1)T and 0<c~< 1/2 we have 

~y a ~ c , t ) ( y -  x ,  t -  s)  A 3 ( y  , S) 

h, { e~+h~r -~-2ah2} (7.4) ~C (t_s)l/2 (s_kT_a_l/2)l/2+el-26hs+~1 

where A3(y, s) is defined in (5.8c) and hs = supy [h(y, s)t. 

ProoL Integrating by parts, we have that 

G(~'~ - x, t - s )A3(y ,  s) (7.5) 
Y 

? , ,  = V ~ G ~ ' ~  t - s ) ~ 5  [ h ' ( y + i , s ) - h ~ ( y - i , s ) ]  g~(y, 
. i = 1  

We write 
2i 

h~(y+i , s ) -h~ (y - i , s )  = ~ V~-h~(y+i-k ,s )  
k = l  

Taking in account that SUpy IH~(y, s)[ ~ch~ by Proposition 6.3, we bound 
(7.5) by 

l N 2i 

c ~  2 2 ~ . h s l V ? a ~ ' ~  [V?h(y+i -k , s ) [  
i 1 k--I  y 

h~ 
- -  sup 1V;-h(y, s)l <~C (t__8)1/2 y 

Using the estimate (7.6), stated in Proposition 7.3 below, we have (7.4). | 
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k e m m a  7.3. F o r k T < t < ~ ( k + l ) T a n d 0 < ~ < l / 2 w e h a v e  

supy IV~-h(y, t)] <~c (t_kT_e_l/2)l/2+eI 2Sh~+ (7.6) 

Proof. Proceeding as in Lemma 5.1 and using the representation for 
p in (5.5), we have, for kT<t<<.(k+ 1)T, 

t)l ~< ~ V ? G ~ " ) ( z - x ,  t-kT)[tl(z, kr ) - f~(z ,  kT)] 

t 6 

+a fkT ~ V+ G~/O(z--x' t--s) i=, ~" Ai(z' s) + cta~+l+: 

(7.7) 

But 

V ~ G~'~ - x, t-kT)[q(z, k T) -- f~(z, k T) ] 
z 

= Z V + G(~'~ x, t -  kT) h(z, kT) 
z 

+ Z V~-G~'~ z -  x, t -  kT)Eq(z, k T ) -  p(z, kTI .~._ ,)r)] 
z 

Therefore (7.7) is bounded by 

IV?h (x, 01 t -kv)  
z 

x {h(z, kT) + [t/(z, kT) - p(z, kTI q(k l~r)] } 

t 6 

+ a f  EV~-G~'~ t - s )  Z Ai(z,s) +ctg ~+I+2 
O k T  z i =  1 

(7.8) 

Taking into account that 

~V~G~")(z, s)= ~ V~-G~'~ s/2)~ G~'~ s/2) (7.9) 
Z y Z 

we gain from ZyV+G~'~ s/2) a factor of order 1/xfls, while the other 
term can be estimated as before. More precisely, we estimate the first term 
in (7.8) using Proposition6.3 and the er continuity of p (see Proposi- 
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tion4.1); the second term using (5.15) for A i, i ~ 3  (for A3; see below). 
Therefore the first term in the right-hand side of (7.8) is less than or equal 
to 

1 
,/2.1/2 Fhk~+ II~k~--Pk~FI] ( t -k r -~  ) 

1 
<~ (t " k T -  e -1/2)1/2 [hkr + e r ] (7.10) 

[The [1. I[ is defined in (4.3).] 
For A 3 w e  have, integrating by parts, 

~ V?G~"I(z - x, t -- s) A3(z, s) 

~z 1 ~ [h~(y+i, s l _h~(y_ i , s ) ]H~(y , s  ) = 3 G ~ , ' ( z - x ,  t - s )  N-~,=I 

O _..L 

where 6 > 0 is arbitrarily chosen. The last inequality comes from Proposi- 
tion 6.3 and from supy IH~(y, s)l ~< chs. 

Taking into account that N = e  1+~, we get (7.6). | 
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